phitter.fit.prior
#
Module Contents#
Classes#
Uniform distribution prior |
|
Gaussian / normal distribution prior |
|
Multivariate Gaussian / normal distribution prior |
|
Constant value prior |
|
Collection of prior objects. Transformation from unit cube to parameter space takes place with the prior_transform() function. Contains separate prior transform functions for use with different sampling software. |
API#
- class phitter.fit.prior.uniform_prior(bound_lo, bound_up)#
Bases:
object
Uniform distribution prior
- bound_lofloat
Lower bound on the distribution
- bound_upfloat
Upper bound on the distribution
Initialization
- __call__(cube)#
- __repr__()#
- class phitter.fit.prior.gaussian_prior(mean, sigma)#
Bases:
object
Gaussian / normal distribution prior
- meanfloat
Mean of the distribution
- sigmafloat
Sigma of the distribution
Initialization
- __call__(cube)#
- __repr__()#
- class phitter.fit.prior.multivariate_gaussian_prior(means, sigmas, covar)#
Bases:
object
Multivariate Gaussian / normal distribution prior
- meansnp.array(dtype=float)
Means of the distribution for each parameter
- sigmasnp.array(dtype=float)
Sigmas of the distribution for each parameter
- covarnp.array(dtype=float)
Covariance matrix between the quantities, of shape [parameter x parameter]. Assume this has been calculated for the quantities after normalization. i.e.: calculated for each quantity after: (quant - mean(quant))/sigma(quant)
Initialization
- __call__(cube)#
- __repr__()#
- class phitter.fit.prior.const_prior(value)#
Bases:
object
Constant value prior
- valuefloat
Constant value to return
Initialization
- __call__(cube)#
- __repr__()#
- class phitter.fit.prior.prior_collection(priors_list)#
Bases:
object
Collection of prior objects. Transformation from unit cube to parameter space takes place with the prior_transform() function. Contains separate prior transform functions for use with different sampling software.
- priors_listlist[prior]
List of priors that consitute the full set of parameters being modeled.
Initialization
- prior_transform_multinest(cube, ndim, nparam)#
Prior transform function for use with PyMultiNest
- prior_transform_ultranest(cube)#
Prior transform function for use with Ultranest
- prior_transform_dynesty(u)#
Prior transform function for use with Dynesty